VAR模型是什么?VAR模型的定义是什么
2015-06-09 11:27 股票知识 zhishi.southmoney.com
VAR模型是什么?VAR模型的定义是什么?
向量自回归(VAR,Vector Auto regression)常用于预测相互联系的时间序列系统以及分析随机扰动对变量系统的动态影响。VAR方法通过把系统中每一个内生变量,作为系统中所有内生变量的滞后值的函数来构造模型,从而回避了结构化模型的要求。Engle和Granger(1987a)指出两个或多个非平稳时间序列的线性组合可能是平稳的。假如这样一种平稳的或的线性组合存在,这些非平稳(有单位根)时间序列之间被认为是具有协整关系的。这种平稳的线性组合被称为协整方程且可被解释为变量之间的长期均衡关系。
VAR模型对于相互联系的时间序列变量系统是有效的预测模型,同时,向量自回归模型也被频繁地用于分析不同类型的随机误差项对系统变量的动态影响。如果变量之间不仅存在滞后影响,而不存在同期影响关系,则适合建立VAR模型,因为VAR模型实际上是把当期关系隐含到了随机扰动项之中。
更多VAR模型知识请关注股票知识网
(股票知识网zhishi.southmoney.com) 股票知识网声明:资讯来源于合作媒体及机构,属作者个人观点,仅供投资者参考,并不构成投资建议。投资者据此操作,风险自担。
要闻导读
|
||||||||||
|